GPU产品为NVIDIA主要收入来源,收入占比稳定在80%以上。由于GPU在机器学习算法、并行计算等方面的优势,NVIDIA将服务和系统、软硬件和可编程算法结合在一起,提出CUDA架构。这一架构形成使研究人员可以以更快更廉价的方式开发深度学习模型,并最终形成CUDA生态。根据下游应用及运营报告,NVIDIA产品主要集中于游戏、专业可视化(专业视觉)、数据中心以及自动驾驶业务。
GeForce RTX 4080 SUPER
游戏显卡业务是NVIDIA的主要产品线与核心领域,作为基本盘见证了其里程碑式的革新。NVIDIA通过对游戏业务的产品革新与升级,以应对游戏玩家日益增长的画质需求。与前一代产品相比,每一代新显卡都带来了显著的性能提升。 从核心数量来看,NVIDIA显卡产品的CUDA核心数量已从最初的640颗增长到现在的高达16384颗,技术上不断突破,包括实时光线追踪技术等。另外,NVIDIA在游戏显卡市场上有着广泛的布局,从入门级到专业级都提供了相应的产品。这一策略允许NVIDIA满足从独立游戏玩家到专业电竞选手的多元需求。
NVIDIA为游戏业务提供的产品为显卡Geforce系列 ,用于游玩PC游戏、流媒体播放的NVIDIA SHIELD设备 ,用于云端游戏的GeForce NOW等硬件和软件 。另一方面,也有专门控制台游戏设备的平台和开发服务,例如显卡配套应用软件GeForce Experience、驱动程序Game Ready等 。
专业设计可视化(专业视觉)业务旨在为建筑工程、消费者互联网、网络安全、能源等不同领域客户引入新的可视化解决方案,提供专业工作站、视觉创作开发等方面的技术与服务支持 。
2021年-2023年,NVIDIA专业可视化业务推出了一系列技术革新,包括新的GPU架构(如Pascal、 Volta、Ampere、Ada Lovelace),更高效的显存技术(如GDDR6X), 以及更加智能化的软件工具(如RTX Studio、NVIDIA Omniverse)。这些创新大幅提升了NVIDIA专业显卡在高性能计算、人工智能、虚拟现实等领域的性能和可靠性,为专业用户提供了更加卓越的视觉体验和计算能力 。
NVIDIA Hopper 架构
NVIDIA基于GPU、DPU和CPU构建的加速计算平台进行数据中心的搭建,旨在解决数据分析、AI 训练、AI 推理、高性能计算等各类工作负载。通过对产品、技术等方面的推新出陈,在2021-2023年的财年收入增长迅速 [58] 。
NVIDIA使用NVlink技术将多个 GPU 结合在一起,加速神经网络训练和推理。2017到2022年,NVIDIA先后推出Volta、Ampere、Hopper等针对高性能计算和AI训练的架构,以此为基础发布了V100、A100、H100等高端GPU。通过不断的技术革新,NVIDIA GPU产品向量双精度浮点算力从7.8 TFLOPS 增至30 TFLOPS。数据中心GPU在11年间从制程工艺到核心数量,各参数全方位提升 。在CPU方面,自2022年公布的首款CPU产品Grace,致力于提供高性能、能效和高带宽连接,用于满足不同的数据中心需求。
2017年美国消费电子展展示的自动驾驶汽车
NVIDIA自2015年开展自动驾驶汽车业务以来,利用自身在高性能计算、影像以及AI领域的数十年经验,为交通运输业提供软件定义的端到端平台,所推出的自动驾驶SoC产品线致力于满足不断增长的计算需求。NVIDIA2024财年第一财季财报(第一财季截至2023年4月30日)显示,NVIDIA负责自动驾驶芯片和软件的汽车部门,上季度营收暴增114%至2.96亿美元,是NVIDIA2023年4月增长最快的业务 。
NVIDIA推出的自动驾驶SoC产品包括Atlan和Orin芯片,该芯片集成Ampere架构GPU核心、基于Arm的Grace CPU核心、深度学习和计算机视觉加速器单元以及BlueField DPU核心,以实现优秀算力和性能。通过具备可扩展和软件定义特性的平台NVIDIA DRIVE AGX,助力自动驾驶汽车处理大量传感器数据,做出实时驾驶决策。